Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Auterion Mission Control (AMC) is a ground control station application for pilots. It can be used to fly aircraft, to plan missions, fly missions, and to configure the aircraft. It can run on Herelink and PC.
Auterion's complete documentation is here: https://docs.auterion.com/operators/getting-started/readme.
Changing these settings requires Advanced Mode, which is not recommended for most pilots. Key safety features and parameters that keep Astro airborne can be disabled if changes are made without understanding their purpose. Keep in mind that changing settings in this mode poses an increased risk to property and safety if not done with careful consideration and care.
To switch to Advanced Mode and see many of these options, repeatedly tap on the AMC icon in the top-left-hand corner of the app. After tapping about 6 times, a popup menu will appear asking if you would like to switch to Advanced Mode. The icon will change once Advanced Mode is active. You can return to Standard Mode by repeating the process of tapping the icon until the menu appears and selecting the option to switch to Standard Mode.
Be very careful about the Autopilot Orientation setting when calibrating sensors in Advanced Mode. It should not be changed from the default value of ROTATION_YAW_270.
The fly screen shows a live feed of either the camera feed or an overhead map view.
This screen includes a live camera feed, telemetry, and camera/gimbal control. You can also launch uploaded missions or take off using the touch screen.
This screen shows the nearby satellite map, as well as the currently uploaded mission when applicable.
An optional checklist to assess the requirements of flying a safe mission or manual flight. This checklist can be accessed by tapping the Vehicle box near the top-left corner of the screen. Tapping the yellow boxes turns them green, allowing you to manually verify each item before takeoff.
Red items represent warnings or errors. Some items will prevent takeoff if there is an associated warning or error, such as insufficient battery power. Others will allow for takeoff with some limited usage. In the example below, there is no GPS signal, so the aircraft will only be capable of taking off in Manual mode.
Definition: The amount that each image overlaps with the previous sequential image; effectively, you are taking pictures more frequently on each straightaway of your mission. Benefit: The higher the front overlap, the more consistent your resulting map will likely be, as the stitching software will have an easier time connecting the discreet images together.
Tradeoff: You will be taking more pictures, many of which are redundant to an extent. This takes up more storage and takes more time to process. When changing this value, keep in mind that your photo interval needs to be greater than or equal to 2.0 seconds. The USB drive cannot save large images any faster. Recommended value: 70%
The amount that each image overlaps with the adjacent images in a parallel leg of the mission. The higher the value, the closer each swath of the mission will be to its neighboring swath.
Like front overlap, higher side overlap increases the consistency of your stitching software by introducing more redundant landmarks that help combine the two photos together.
Due to the increased number of passes over the same area, increasing side overlap will also increase the duration of your mission. Unlike front overlap, increasing your side overlap percentage does not increase your photo interval, though it will still increase the total number of pictures taken.
Recommended value: 70%
The Survey options ask you to select one: Altitude or Grnd Res. These two options are directly proportional and can be selected based on the mission area and your requirements.
Grnd Res, or Ground Resolution, is a general approximation of the fidelity of each image when compared to real-world measurements. For example, a ground resolution of 1 cm/px posits that every single pixel in the resulting map will be approximately 1 centimeter in length. This measurement can be calculated using the camera's resolution and the distance from the object being photographed. It stands to reason that if we have the desired ground resolution and the camera's resolution as known variables, the distance (or altitude of the aircraft) can be calculated as well!
Notice how changing the altitude or Grnd Res sliders will also change the other option automatically. If you are using Grnd Res, make sure that the resulting altitude is still clear of any obstacles.
Pattern Options
Mission import/export: AMC’s .plan files can be imported and exported. This is useful for creating missions on a computer, then importing all of them to Herelink at the same time
KML import: KML files can be imported to AMC. This is useful for creating mission shape definitions in some software, then importing all of them to Herelink at the same time.
Important Note on importing:
Zoom in to maximum level, then create a random survey shape. If you don’t zoom in, survey shape could be very large and could crash AMC
Then click “import KML” on the right toolbar
Survey shape will automatically change to the data defined in the KML import
KML export: This is useful for exporting waypoints outside AMC. You won’t be able to import them back as KML, since these are waypoints, and not a shape definition.
This method may not work as expected on Mac. We recommend using Method 2 on Apple computers.
1) Connect the Herelink via the Micro USB port to a computer.
2) Turn on the Herelink.
3) Drag down from the top to open the drop-down menu. Select “USB Charging this device”.
4) Select “Transfer files”.
5) The Herelink will appear on your computer as a device named “Optimus”.
6) Upload flight plans into the following folder: Optimus > Internal shared storage > Documents > Auterion Mission Control > Missions
If you aren't seeing the files you're expecting on the Herelink or computer, restart the Herelink.
1) Upload flight plans onto the MicroSD card.
2) Insert Micro SD card into the Herelink’s Micro SD Card slot.
3) Drag down from the top to open the drop-down menu and select the Micro SD card device.
4) Select the desired flight plan and select “Copy to…” or “Move to…”
5) Select Optimus > Documents > Auterion Mission Control > Missions.
6) Select “Copy” or “Move” to complete transferring.
Provides a brief overview of the main vehicle setup bullet-points that pilots should consider before takeoff. If there is an issue with the sensors or radio, the green dots seen below will instead be red.
Currently, the only functionality of this screen is to change and test the functionality of the physical button on the top-right corner of the Herelink controller.
Use the dropdown to select the functionality of the button. Watch the box with the 0 in it while pressing the button to verify that it is working.
Select Compass, Gyroscope, or Accelerometer to recalibrate. Calibration is recommended for any sensors marked with a red dot.
Displays a live view of the radio inputs. Allows you to switch between Mode 1 and Mode 2 control schemes (Mode 2 recommended).
This screen is essential to operating Astro safely. Ensure that the altitude under Return To Launch Settings is higher than the tallest obstructing obstacle. For instance, if your mission takes place near a 65m tree, a return altitude of 60m is insufficient. If an RTL triggers while the aircraft and the landing point are on opposite sides of this tree and you are unable to regain control, it is unlikely that the aircraft will return to the ground safely in this scenario.